27 research outputs found

    Localization of sentinel lymph node in breast cancer. A prospective study

    Get PDF
    Introduction: Sentinel Lymph Node Biopsy (SLNB) is the standard of care for staging axillary lymph nodes in women with breast cancer and clinically negative nodes. It is associated with reduced arm morbidity, moderated or severe lymphoedema, and a better quality of life in comparison with standard axillary treatment. Unfortunately, skip metastases makes all minimally invasive approaches, such as axillary sampling, unreliable. The aim of the present clinical prospective study is to evaluate the position of SLN in an important number of cases and establish the real incidence of skip metastases in clinically nodenegative patients. Patients and methods: A cohort of 898 female patients with breast carcinoma was considered, from 2001 to 2008. Once SLN was localized, by means of radio-colloid or blue dye staining, and isolated, a biopsy was performed. Only those positive for metastases were submitted to axillary dissection. Results: Only in nine cases a SLN was not isolated. We had 819 cases of first level SLN (group A) and 69 cases of second level SLN (group B). Considering all of 889 cases, SLN was localized in the second level in 69 patients (7.8%); but if we consider metastatic SLN alone (340 cases), it was in the second level in 23 subjects (6.8%). In total, we had a positive second level SLN in 2.3% of cases (23/889). Conclusion: Second level SLN could be considered only an anomalous lymphatic axillary drainage and it does not linked to particular histological variants of the primitive tumour. In our study, skip metastases were recognized in only 2.6% of cases, therefore, whenever a SLN is not isolated for any reason, the first level sampling represent a viable operative choice

    Comparative Study of Human and Automated Screening for Antinuclear Antibodies by Immunofluorescence on HEp-2 Cells

    Get PDF
    Background: Several automated systems had been developed in order to reduce inter-observer variability in indirect immunofluorescence (IIF) interpretation. We aimed to evaluate the performance of a processing system in antinuclear antibodies (ANA) screening on HEp-2 cells. Patients and Methods: This study included 64 ANA-positive sera and 107 ANA-negative sera that underwent IIF on two commercial kits of HEp-2 cells (BioSystems® and Euroimmun®). IIF results were compared with a novel automated interpretation system, the “CyclopusCADImmuno®” (CAD). Results: All ANA-positive sera images were recognized as positive by CAD (sensitivity = 100%), while 17 (15.9%) of the ANA-negative sera images were interpreted as positive (specificity = 84.1%), =0.799 (SD=0.045). Comparison of IIF pattern determination between human and CAD system revealed on HEp-2 (BioSystems®), a complete concordance in 6 (9.37%) sera, a partial concordance (sharing of at least 1 pattern) in 42 (65.6%) cases and in 16 (25%) sera the pattern interpretation was discordant. Similarly, on HEp-2 (Euroimmun®) the concordance in pattern interpretation was total in 5 (7.8%) sera, partial in 39 (60.9%) and absent in 20 (31.25%). For both tested HEp-2 cells kits agreement was enhanced for the most common patterns, homogenous, fine speckled and coarse speckled. While there was an issue in identification of nucleolar, dots and nuclear membranous patterns by CAD. Conclusion: Assessment of ANA by IIF on HEp-2 cells using the automated interpretation system, the “CyclopusCADImmuno®” is a reliable method for positive/negative differentiation. Continuous integration of IIF images would improve the pattern identification by the CAD

    Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project

    Get PDF
    Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF)method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of aCAD(Computer AidedDetection) solution and for the assessment of its added value, in order to be applied along with an Immunologist as a second Reader in detection of autoantibodies. This CAD system is able to identify on IIF images the fluorescence intensity and the fluorescence pattern. Preliminary results show that CAD, used as second Reader, appeared to perform better than Junior Immunologists and hence may significantly improve their efficacy; compared with two Junior Immunologists, the CAD system showed higher Intensity Accuracy (85,5% versus 66,0% and 66,0%), higher Patterns Accuracy (79,3% versus 48,0% and 66,2%), and higher Mean Class Accuracy (79,4% versus 56,7% and 64.2%)

    Analisi di test di Immunofluorescenze indiretta per il supporto alla diagnosi di Malattie Autoimmuni basata su Deep Learning.

    No full text
    La diagnosi delle malattie autoimmuni rappresenta un problema molto importante in medicina. Il test più utilizzato a questo scopo è il test anticorpo antinucleo, un test indiretto di immunofluorescenza. Il metodo proposto affronta tale problema sfruttando le metodologie del Machine Learning. In particolare, fa uso di reti neurali pre-addestrate in grado di classificare i pattern auto anticorpali collegati alle patologie autoimmuni. Gli strati delle reti pre-addestrate e vari parametri di sistema sono stati valutati al fine di ottimizzare il processo. Le prestazioni del sistema sono state valutate in termini di accuratezza in un processo di cross validation, mostrando efficienza e robustezza

    Performance of Fine-Tuning Convolutional Neural Networks for HEp-2 Image Classification

    Get PDF
    The search for anti-nucleus antibodies (ANA) represents a fundamental step in the diagnosis of autoimmune diseases. The test considered the gold standard for ANA research is indirect immunofluorescence (IIF). The best substrate for ANA detection is provided by Human Epithelial type 2 (HEp-2) cells. The first phase of HEp-2 type image analysis involves the classification of fluorescence intensity in the positive/negative classes. However, the analysis of IIF images is difficult to perform and particularly dependent on the experience of the immunologist. For this reason, the interest of the scientific community in finding relevant technological solutions to the problem has been high. Deep learning, and in particular the Convolutional Neural Networks (CNNs), have demonstrated their effectiveness in the classification of biomedical images. In this work the efficacy of the CNN fine-tuning method applied to the problem of classification of fluorescence intensity in HEp-2 images was investigated. For this purpose, four of the best known pre-trained networks were analyzed (AlexNet, SqueezeNet, ResNet18, GoogLeNet). The classifying power of CNN was investigated with different training modalities; three levels of freezing weights and scratch. Performance analysis was conducted, in terms of area under the ROC (Receiver Operating Characteristic) curve (AUC) and accuracy, using a public database. The best result achieved an AUC equal to 98.6% and an accuracy of 93.9%, demonstrating an excellent ability to discriminate between the positive/negative fluorescence classes. For an effective performance comparison, the fine-tuning mode was compared to those in which CNNs are used as feature extractors, and the best configuration found was compared with other state-of-the-art works

    Automatic segmentation of HEp-2 cells based on active contours model

    No full text
    In the past years, a great deal of effort was put into research regarding Indirect Immunofluorescence techniques with the aim of development of CAD systems. In this work a method for segmenting HEp-2 cells in IIF images is presented. Such task is one of the most challenging of automated IIF analysis, because the segmentation algorithm has to cope with a large heterogeneity of shapes and textures. In order to address this problem, numerous techniques and their combinations were evaluated, in a process aimed at maximizing the figure of merit. The proposed method, for a greater definition of cellular contours, uses the active contours in the last phase of the process. The initial conditions, center position and initial curve of the active contour, were obtained using a randomized Hough transform for ellipse; the idea in identifying cells was to approximate them initially to ellipses. The purpose of the active contours, within the segmentation process, is to allow the separation of connected regions (such as two overlapping cells), in order to obtain a better definition of the objects to be analyzed (the cells). Our system has been developed and tested on public database. Segmentation performances were evaluated in terms of Dice index and the method was compared with other state-of-the-art workers. The results obtained demonstrate the goodness of the method in the characterization of HEp-2 cells. The developed method shows great strength and convergence speed. Furthermore, the flexibility of the proposed method allows it to be easily used in other biomedical contexts

    An Automatic HEp-2 Specimen Analysis System Based on an Active Contours Model and an SVM Classification

    Get PDF
    The antinuclear antibody (ANA) test is widely used for screening, diagnosing, and monitoring of autoimmune diseases. The most common methods to determine ANA are indirect immunofluorescence (IIF), performed by human epithelial type 2 (HEp-2) cells, as substrate antigen. The evaluation of ANA consist an analysis of fluorescence intensity and staining patterns. This paper presents a complete and fully automatic system able to characterize IIF images. The fluorescence intensity classification was obtained by performing an image preprocessing phase and implementing a Support Vector Machines (SVM) classifier. The cells identification problem has been addressed by developing a flexible segmentation methods, based on the Hough transform for ellipses, and on an active contours model. In order to classify the HEp-2 cells, six SVM and one k-nearest neighbors (KNN)classifiers were developed. The system was tested on a public database consisting of 2080 IIF images. Unlike almost all work presented on this topic, the proposed system automatically addresses all phases of the HEp-2 image analysis process. All results have been evaluated by comparing them with some of the most representative state-of-the-art work, demonstrating the goodness of the system in the characterization of HEp-2 images

    Deep Convolutional Neural Network for HEp-2 Fluorescence Intensity Classification

    Get PDF
    Indirect ImmunoFluorescence (IIF) assays are recommended as the gold standard method for detection of antinuclear antibodies (ANAs), which are of considerable importance in the diagnosis of autoimmune diseases. Fluorescence intensity analysis is very often complex, and depending on the capabilities of the operator, the association with incorrect classes is statistically easy. In this paper, we present a Convolutional Neural Network (CNN) system to classify positive/negative fluorescence intensity of HEp-2 IIF images, which is important for autoimmune diseases diagnosis. The method uses the best known pre-trained CNNs to extract features and a support vector machine (SVM) classifier for the final association to the positive or negative classes. This system has been developed and the classifier was trained on a database implemented by the AIDA (AutoImmunité, Diagnostic Assisté par ordinateur) project. The method proposed here has been tested on a public part of the same database, consisting of 2080 IIF images. The performance analysis showed an accuracy of fluorescent intensity around 93%. The results have been evaluated by comparing them with some of the most representative state-of-the-art works, demonstrating the quality of the system in the intensity classification of HEp-2 images

    Automated approach for indirect immunofluorescence images classification based on unsupervised clustering method

    No full text
    Autoimmune diseases (ADs) are a collection of many complex disorders of unknown aetiology resulting in immune responses to self-antigens and are thought to result from interactions between genetic and environmental factors. ADs collectively are amongst the most prevalent diseases in the U.S., affecting at least 7% of the population. The diagnosis of ADs is very complex, the standard screening methods provides seeking and recognizing of Antinuclear Antibodies (ANA) by Indirect ImmunoFluorescence (IIF) based on HEp-2 cells. In this paper an automatic system able to identify and classify the Centromere pattern is presented. The method is based on the grouping of centromeres present on the cells through a clustering K-means algorithm. The performances were obtained on two public database of IIF images (A.I.D.A. and MIVIA). Our results showed a sensitivity for image of (90 \ub1 5)% and a Accuracy equal to (98.0 \ub1 0.5)%. Results demonstrate that the system is able to identify and classify Centromere pattern with accuracy better or comparable with some representative state of the art works. Moreover, it should be noted that for the classification phase the works used for the comparison used an expert-manual segmentation while, in the present work, the segmentation was obtained automatically
    corecore